Диаграмма атома Ba ионы I II III IV V VI VII VIII IX X

Фильтр Значений

от
до
Длина волны: [Å]  
Энергия: см-1  
Показать автоионизационные состояния:  
Максимальное n:  
Максимальное l:  
Сгруппировать по мультеплетностям:  
Показать запрещенные линии (по мультиплетности):  
Показать запрещенные линии (по четности):  
Группировка уровней: По терму
По числу J
Без группировки
Автоопределение
 
Ширина диаграммы: px  
 
Ba III U[cm-1]0289100 132770.8 216847.4 245077 134568.1 217420.7 245363.6 137983.1 218725.5 245857.6 138931.3 218225 245668 140472.9 218422 245726.2 142930 219262.3 246121 147066.9 219844.6 246348.7 153054.6 222743.5 247635.5 260390 268250 273180 276520 279010 280760 282110 283140 283970 284630 285650 286000 286310 286600 156736.3 235589.6 159509.2 236065.6 161109.3 236423.5 180026.7 238027 264130 277580 285470 290560 294000 296430 298220 299580 300620 301460 152135 217975.3 245326.3 154494.2 218837.3 245628.9 169297.2 235676.7 170192.5 235935.3 262960 248905.5 248919.9 249006 261271.7 249010.4 261275.5 249246.2 249254.4 249365.4 261478 249367.5 261480.4 266672.5 266676.2 266682.7 266691.3 259470 267620 272790 276300 278790 280610 281990 283060 283910 284580 285140 285600 286000 286310 286600 276920 285090 290290 293810 296290 298140 299490 300620 301460 0 261657.7 261657.6 261628.1 261628 261548.3 261548.3 261521.4 261521.2 201309 200608.6 199872.9 196643.3 187660.6 232029.8 184342.9 230671.9 182722.4 230176.7 181816.2 230007.6 179530.6 229058.6 177593.5 228369.6 196410.3 246506.8 192011.9 246533.7 191112.2 246467.6 189195.3 246341.3 182598.6 229456.1 178776.6 229896.9 250844.5 175778.1 229753.6 250782.9 172522.9 228729.5 250253.8 171728.7 229106.9 171398.4 228724.4 250272.4 168583.8 228310.7 166544 228167.2 ~~ 147830 183130 218430 253730 5p5nd 2P03/2 2[1/2]o0 5p5(2P03/2)5d , j=0 5p5(2P03/2)6d , j=0 5p5(2P03/2)7d , j=0 2[1/2]o1 5p5(2P03/2)5d , j=1 5p5(2P03/2)6d , j=1 5p5(2P03/2)7d , j=1 2[3/2]o2 5p5(2P03/2)5d , j=2 5p5(2P03/2)6d , j=2 5p5(2P03/2)7d , j=2 2[7/2]o4 5p5(2P03/2)5d , j=4 5p5(2P03/2)6d , j=4 5p5(2P03/2)7d , j=4 2[7/2]o3 5p5(2P03/2)5d , j=3 5p5(2P03/2)6d , j=3 5p5(2P03/2)7d , j=3 2[5/2]o2 5p5(2P03/2)5d , j=2 5p5(2P03/2)6d , j=2 5p5(2P03/2)7d , j=2 2[5/2]o3 5p5(2P03/2)5d , j=3 5p5(2P03/2)6d , j=3 5p5(2P03/2)7d , j=3 2[3/2]o1 5p5(2P03/2)5d , j=1 5p5(2P03/2)6d , j=1 5p5(2P03/2)7d , j=1 5p5(2P03/2)8d , j=1 5p5(2P03/2)9d , j=1 5p5(2P03/2)10d , j=1 5p5(2P03/2)11d , j=1 5p5(2P03/2)12d , j=1 5p5(2P03/2)13d , j=1 5p5(2P03/2)14d , j=1 5p5(2P03/2)15d , j=1 5p5(2P03/2)16d , j=1 5p5(2P03/2)17d , j=1 5p5(2P03/2)19d , j=1 5p5(2P03/2)20d , j=1 5p5(2P03/2)21d , j=1 5p5(2P03/2)22d , j=1 2P01/2 2[5/2]o2 5p5(2P01/2)5d , j=2 5p5(2P01/2)6d , j=2 2[3/2]o2 5p5(2P01/2)5d , j=2 5p5(2P01/2)6d , j=2 2[5/2]o3 5p5(2P01/2)5d , j=3 5p5(2P01/2)6d , j=3 2[3/2]o1 5p5(2P01/2)5d , j=1 5p5(2P01/2)6d , j=1 5p5(2P01/2)7d , j=1 5p5(2P01/2)8d , j=1 5p5(2P01/2)9d , j=1 5p5(2P01/2)10d , j=1 5p5(2P01/2)11d , j=1 5p5(2P01/2)12d , j=1 5p5(2P01/2)13d , j=1 5p5(2P01/2)14d , j=1 5p5(2P01/2)15d , j=1 5p5(2P01/2)16d , j=1 5p5ns 2P03/2 2[3/2]o2 5p5(2P03/2)6s , j=2 5p5(2P03/2)7s , j=2 5p5(2P03/2)8s , j=2 2[3/2]o1 5p5(2P03/2)6s , j=1 5p5(2P03/2)7s , j=1 5p5(2P03/2)8s , j=1 2P01/2 2[1/2]o0 5p5(2P01/2)6s , j=0 5p5(2P01/2)7s , j=0 2[1/2]o1 5p5(2P01/2)6s , j=1 5p5(2P01/2)7s , j=1 5p5(2P01/2)8s , j=1 5p5ng 2P03/2 2[5/2]o2 5p5(2P03/2)5g , j=2 2[5/2]o3 5p5(2P03/2)5g , j=3 2[11/2]o6 5p5(2P03/2)5g , j=6 5p5(2P03/2)6g , j=6 2[11/2]o5 5p5(2P03/2)5g , j=5 5p5(2P03/2)6g , j=5 2[7/2]o4 5p5(2P03/2)5g , j=4 2[7/2]o3 5p5(2P03/2)5g , j=3 2[9/2]o4 5p5(2P03/2)5g , j=4 5p5(2P03/2)6g , j=4 2[9/2]o5 5p5(2P03/2)5g , j=5 5p5(2P03/2)6g , j=5 2P01/2 2[9/2]o4 5p5(2P01/2)5g , j=4 2[9/2]o5 5p5(2P01/2)5g , j=5 2[7/2]o4 5p5(2P01/2)5g , j=4 2[7/2]o3 5p5(2P01/2)5g , j=3 2p5ns 2P03/2 2[3/2]o1 2p5(2P03/2)9s , j=1 2p5(2P03/2)10s , j=1 2p5(2P03/2)11s , j=1 2p5(2P03/2)12s , j=1 2p5(2P03/2)13s , j=1 2p5(2P03/2)14s , j=1 2p5(2P03/2)15s , j=1 2p5(2P03/2)16s , j=1 2p5(2P03/2)17s , j=1 2p5(2P03/2)18s , j=1 2p5(2P03/2)19s , j=1 2p5(2P03/2)20s , j=1 2p5(2P03/2)21s , j=1 2p5(2P03/2)22s , j=1 2p5(2P03/2)23s , j=1 2P01/2 2[1/2]o1 2p5(2P01/2)9s , j=1 2p5(2P01/2)10s , j=1 2p5(2P01/2)11s , j=1 2p5(2P01/2)12s , j=1 2p5(2P01/2)13s , j=1 2p5(2P01/2)14s , j=1 2p5(2P01/2)15s , j=1 2p5(2P01/2)16s , j=1 2p5(2P01/2)17s , j=1 5p6 1S0 5p6, j=0 5p56h 2P03/2 2[11/2]6 5p5(2P03/2)6h , j=6 2[11/2]5 5p5(2P03/2)6h , j=5 2[9/2]4 5p5(2P03/2)6h , j=4 2[9/2]5 5p5(2P03/2)6h , j=5 2[13/2]7 5p5(2P03/2)6h , j=7 2[13/2]6 5p5(2P03/2)6h , j=6 2[7/2]4 5p5(2P03/2)6h , j=4 2[7/2]3 5p5(2P03/2)6h , j=3 5p5np 2P01/2 2[1/2]0 5p5(2P01/2)6p , j=0 2[3/2]2 5p5(2P01/2)6p , j=2 2[1/2]1 5p5(2P01/2)6p , j=1 2[3/2]1 5p5(2P01/2)6p , j=1 2P03/2 2[1/2]0 5p5(2P03/2)6p , j=0 5p5(2P03/2)7p , j=0 2[3/2]2 5p5(2P03/2)6p , j=2 5p5(2P03/2)7p , j=2 2[3/2]1 5p5(2P03/2)6p , j=1 5p5(2P03/2)7p , j=1 2[5/2]3 5p5(2P03/2)6p , j=3 5p5(2P03/2)7p , j=3 2[5/2]2 5p5(2P03/2)6p , j=2 5p5(2P03/2)7p , j=2 2[1/2]1 5p5(2P03/2)6p , j=1 5p5(2P03/2)7p , j=1 5p5nf 2P01/2 2[5/2]2 5p5(2P01/2)4f , j=2 5p5(2P01/2)5f , j=2 2[7/2]4 5p5(2P01/2)4f , j=4 5p5(2P01/2)5f , j=4 2[5/2]3 5p5(2P01/2)4f , j=3 5p5(2P01/2)5f , j=3 2[7/2]3 5p5(2P01/2)4f , j=3 5p5(2P01/2)5f , j=3 2P03/2 2[5/2]2 5p5(2P03/2)4f , j=2 5p5(2P03/2)5f , j=2 2[7/2]4 5p5(2P03/2)4f , j=4 5p5(2P03/2)5f , j=4 5p5(2P03/2)6f , j=4 2[7/2]3 5p5(2P03/2)4f , j=3 5p5(2P03/2)5f , j=3 5p5(2P03/2)6f , j=3 2[9/2]4 5p5(2P03/2)4f , j=4 5p5(2P03/2)5f , j=4 5p5(2P03/2)6f , j=4 2[5/2]3 5p5(2P03/2)4f , j=3 5p5(2P03/2)5f , j=3 2[9/2]5 5p5(2P03/2)4f , j=5 5p5(2P03/2)5f , j=5 5p5(2P03/2)6f , j=5 2[3/2]2 5p5(2P03/2)4f , j=2 5p5(2P03/2)5f , j=2 2[3/2]1 5p5(2P03/2)4f , j=1 5p5(2P03/2)5f , j=1 361.93 361.63 366.06 366.58 373.67 372.78 361.12 360.25 354.62 354.48 356.18 356.36 358.69 358.42 378.6 380.29 555.478 456.961 587.548 647.279 331.72 653.364 448.947 423.843 385.4 384.04 403.821 407.118 420.119 353.28 743.121 337.51 353.18 340.14 340.35 344.48 344.16 335.41 335.32 332.65 331.72 332.65 333.8 333.9 348.91 337.34 350.77 350.7 351.39 352.15 352.23 348.91 350.29 351.34 349.27 350.14 349.65 349.27 349.65 350.08 5726.181 5740.384 5772.653 5813.544 5725.213 5859.2 5798.255 5286.081 5518.162 5499.174 5568.288 5613.132 5697.388 5716.613 6117.811 6036.582 6033.206 6076.663 6101.988 5196.43 6107.997 6016.409 5998.004 5895.778 5882.805 5951.08 5968.271 5983.719 5881.869 4950.127 4854.222 4850.838 4868.166 4917.17 4929.37 4929.191 4844.574 4842.873 4327.942 6131.377 4697.438 4773.366 4820.646 4945.434 4952.912 5126.549 5097.539 5134.542 5136.29 5166.698 5140.105 5049.551 5045.79 4963.233 4961.641 4964.039 5033.506 5037.334 5173.228 5900.285 7095.49 6822.042 6684.007 6583.333 7411.19 7577.95 7973.66 7933.38 7924.44 7873.93 6526.166 7970.84 6469.779 6270.078 6163.773 6145.455 6307.371 6144.562 6360.133 6406.154 6383.763 6377.106 9529.11 9610.89 9629.95 9675.03 9618 9298.37 9699.01 4993.261 9302.8 9347.54 9398.98 9399.48 4646.217 10552.94 4053.709 9233.36 10793.43 4385.832 4481.654 9888.34 9945.26 10205.14 10429.9 9780.79 9521.76 8308.68 5528.142 8368.41 5426.995 8484.8 8134.32 8133.02 9180.23 6077.815 8074.13 8079.43 8565.25 5658.597 5102.248 9130.84 8590.28 9159.65 9070.59 9088.98 8816.36 8822.53 8676.54 8831.69 2726.691 2722.656 2708.55 2684.053 2628.827 2730.998 2638.425 2669.713 2620.172 2767.2 2776.719 2600.361 2790.647 2772.14 2768.128 2745.783 2762.171 2764.745 2735.929 2497.925 2479.776 2490.224 2498.426 2475.621 2434.243 2791.309 2430.462 2423.866 2510.088 2516.124 2550.591 2561.141 2566.864 2546.754 2544.283 2529.276 2543.339 2570.48 3775.928 3206.608 3212.806 3224.89 3195.167 3171.603 3140.601 3151.202 3165.296 3286.788 3349.261 3813.133 3993.061 2415.673 3779.531 3557.16 3369.677 3383.812 3541.548 3126.446 3119.477 2857.849 2862.902 2870.898 2849.559 2835.822 2815.942 2819.478 2829.886 2887.146 2888.83 3014.219 3022.297 3071.677 2938.952 2933.493 2898.181 2907.602 2792.178 2384.994 1610.954 1612.746 2005.846 1358.929 2022.445 2008.403 1354.708 1346.439 1339.331 1987.944 1421.602 1341.122 1994.354 1594.188 2038.84 1564.694 1360.981 2075.999 2077.668 2081.351 1566.123 2071.683 1577.323 1589.657 2046.978 1574.547 2070.425 1334.011 1617.014 1295.486 1639.79 1327.752 1290.701 1289.722 1290.031 1301.349 1307.401 1321.313 1667.364 1323.266 1725.076 1308.873 1883.506 1288.526 1331.333 1973.231 1631.693 1625.629 1214.159 1965.541 1950.814 1916.405 1282.556 1244.762 1239.603 1328.817 1549.6 1126.725 2305.785 1066.748 1066.084 1058.31 1053.877 2298.988 2293.471 1086.802 1315.722 1479.915 1070.068 1068.39 2313.413 1476.389 1419.05 1416.611 2399.143 2402.143 1422.862 2371.804 2344.276 1475.575 1366.05 1464.901 2323.505 1498.33 1481.846 2154.769 2150.034 1540.526 1519.857 1518.986 2140.959 2135.397 2103.107 2102.211 2127.131 2134.873 2135.253 1500.244 2178.009 1507.673 1507.809 1504.22 1501.714 2250.976 2202.992 1112.672 2223.392 2223.83 1514.223 1510.676 1512.891 1418.472 1375.138 1369.534 1364.787 1173.268 1107.084 1108.841 1099.315 1097.981 1097.41 1108.944 1113.665 1118.266 1116.876 1116.006 1113.948 1093.215 1086.665 927.193 942.86 921.795 910.91 898.145 963.602 965.472 1078.88 1048.265 1046.044 967.016 1120.061 1128.226 1218.917 1219.633 1207.286 1205.681 1196.098 1224.545 1230.852 1312.754 1311.744 1299.177 1293.308 1173.194 1171.524 1146.172 1148.398 1138.458 1133.052 1128.849 1149.454 1149.971 1170.621 1160.402 1155.722 1151.757 1315.242 1615.778 2713.136 2160.757 2731.387 2156.37 2697.502 2681.891 2240.683 2234.483 2230.33 2224.249 2094.117 2813.556 2025.965 2908.162 2001.297 2960.053 2884.041 2876.908 2831.61 2831.943 2074.798 2051.79 2609.931 2570.833 2505.067 2508.953 2317.5 2512.284 2331.101 2476.732 2418.039 2432.393 2373.121 2372.976 2519.783 2520.124 2278.639 2564.835 2269.687 2257.902 2559.535 2278.746 2523.825 2530.919 2280.684 2962.484 2976.06 3559.478 3649.184 3655.781 3847.113 3556.327 1662.911 3368.175 1711.532 3471.394 3500.29 3896.958 3926.851 1456.786 1456.496 1453.46 1437.825 1470.644 1478.847 3927.227 2413.968 1596.796 1565.611 3332.053 1787.712 3103.924 3119.221 1974.757 3152.697 3079.902 3079.465 1989.5 3043.421 3048.136 3079.136 3163.345 1916.405 3266.971 3268.379 3269.618 3281.654 3235.04 1861.74 1883.922 3198.49 1869.852 1436.831 Ba III U[eV]035.8 ~~ 18.3 22.7 27.1 31.5