Информационная система «Электронная структура атомов»
RU
EN
Элементы
Уровни
Переходы
Диаграммы
Спектры
О проекте
Описание
Коллектив
Публикации
Спонсоры
Дипломы
Библиография
Ссылки
Таблица
Диаграмма атома
Sr
ионы
I
II
III
IV
V
VI
VII
VIII
IX
87
Sr
88
Sr
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
10
11
12
13
14
15
16
17
18
Лантаноиды
Актиноиды
Суперактиноиды
29
T
D
122
Ubb
121
Ubu
120
Ubn
119
Uue
118
Og
117
Ts
116
Lv
115
Mc
114
Fl
113
Nh
112
Cn
111
Rg
110
Ds
109
Mt
108
Hs
107
Bh
106
Sg
105
Db
104
Rf
103
Lr
102
No
101
Md
100
Fm
99
Es
98
Cf
97
Bk
96
Cm
95
Am
94
Pu
93
Np
92
U
91
Pa
90
Th
89
Ac
88
Ra
87
Fr
86
Rn
85
At
84
Po
83
Bi
82
Pb
81
Tl
80
Hg
79
Au
78
Pt
77
Ir
76
Os
75
Re
74
W
73
Ta
72
Hf
71
Lu
70
Yb
69
Tm
68
Er
67
Ho
66
Dy
65
Tb
64
Gd
63
Eu
62
Sm
61
Pm
60
Nd
59
Pr
58
Ce
57
La
56
Ba
55
Cs
54
Xe
53
I
52
Te
51
Sb
50
Sn
49
In
48
Cd
47
Ag
46
Pd
45
Rh
44
Ru
43
Tc
42
Mo
41
Nb
40
Zr
39
Y
38
Sr
37
Rb
36
Kr
35
Br
34
Se
33
As
32
Ge
31
Ga
30
Zn
29
Cu
28
Ni
27
Co
26
Fe
25
Mn
24
Cr
23
V
22
Ti
21
Sc
20
Ca
19
K
18
Ar
17
Cl
16
S
15
P
14
Si
13
Al
12
Mg
11
Na
10
Ne
9
F
8
O
7
N
6
C
5
B
4
Be
3
Li
2
He
1
H
Фильтр Значений
от
до
Длина волны:
[Å]
Энергия:
см
-1
Показать автоионизационные состояния:
Максимальное n:
Максимальное l:
Сгруппировать по мультеплетностям:
Показать запрещенные линии (по мультиплетности):
Показать запрещенные линии (по четности):
Группировка уровней:
По терму
По числу J
Без группировки
Автоопределение
Ширина диаграммы:
px
Sr IV
U
[cm
-1
]
0
453930
267529.3
350211.1
267537.3
349952.3
270350.3
351735.3
271249.5
351462.1
271328.6
351443.5
276159.2
353899.1
276054.7
358151.5
278078
359228.7
279165.7
359420.7
282345.5
360403
282440.5
361194.3
277913.8
359197.6
281543.9
360770.1
288655.1
370570.3
290311.9
371247
292454.7
294867.6
372804.7
295118.7
373036.1
297705.1
314666.8
315791.7
328551.4
328908.7
329681.1
330811.4
335379.1
335431.1
336723.7
340973.1
341157.7
341420.6
343266.7
343520.5
335706.9
335780
335780.4
340337.9
344417.5
345236.3
351166.7
352075.6
352624.1
353156.2
353192.2
353937.4
355372
357530.8
357874.8
376797.5
376898.9
377521.7
377552.5
377767
378028.8
378524.8
379962.2
380835.1
334267.6
335389.1
338194.3
350449.7
350715
352433
354435.3
360344.7
360539.3
361406.3
361478.3
363743.4
367291.3
368412
405022.8
405024
405026
405026.6
405086.1
405087.3
405139.3
405140.8
405180.6
405182.7
413358.4
413359.4
413480.1
413480.3
413807.1
425272.6
425273.5
425399.4
425400
425519.6
425520.3
425530.9
425532.4
9727.9
0
403864.7
403864
403816
403806.1
403396.1
403388
403040
403039
391856.5
391854.2
391711.1
391709.4
391336.5
391323.4
391257.5
391242.8
383457.4
404981.7
383451
404970.5
383286
404867.8
383277
404860.7
383151.5
404803.9
383134.1
382932.4
404690.2
382914.8
404681.8
382897.8
404657.8
382891.6
404652.7
274688
378474.3
250503.7
354937.1
399560.6
250046.8
354841.9
399522.2
242092.8
344195.9
387557.6
238218
342700.1
387472.8
236924.7
342636.3
388284
232210.4
335436.9
379680.7
228654.2
334143.9
379067
373710.5
373326.8
353264.7
398300
353148.6
397965
351726.9
398073.6
351385.4
398091.7
350832.4
397204
350670.5
397314
350510.4
397631.8
348308.7
396805.7
348103.9
396691.7
337151.3
386725.5
337047.4
387321.3
341217
385489.8
341045.4
385191.4
338581.2
385745
337963.8
385158.1
336898.3
384999.1
336333.7
384695.3
333196
378892.6
333030.6
378915
331574.9
378221.9
329973.9
377348.6
329068.5
377002.3
328733.9
377030.3
327865.9
376503.1
327296.3
376297.3
327166.6
376210.7
245734.9
242171.6
257345
228097.7
225871.2
215188.4
215187.7
211973.1
209211.1
206524.1
200529.3
264181.6
254821
253231.8
252386
214946
207478.2
208937.8
204809
204743.5
204179.7
203344.4
200340
197060
189119.6
188024.1
187200.7
187160.3
150504.1
~
~
178010
247010
316010
385010
4s
2
4p
4
np
3
P
2
2
[1]
o
3/2
4s
2
4p
4
(
3
P
2
)5p, j=3/2
4s
2
4p
4
(
3
P
2
)6p, j=3/2
2
[2]
o
5/2
4s
2
4p
4
(
3
P
2
)5p, j=5/2
4s
2
4p
4
(
3
P
2
)6p, j=5/2
2
[1]
o
1/2
4s
2
4p
4
(
3
P
2
)5p, j=1/2
4s
2
4p
4
(
3
P
2
)6p, j=1/2
2
[3]
o
7/2
4s
2
4p
4
(
3
P
2
)5p, j=7/2
4s
2
4p
4
(
3
P
2
)6p, j=7/2
2
[3]
o
5/2
4s
2
4p
4
(
3
P
2
)5p, j=5/2
4s
2
4p
4
(
3
P
2
)6p, j=5/2
2
[2]
o
3/2
4s
2
4p
4
(
3
P
2
)5p, j=3/2
4s
2
4p
4
(
3
P
2
)6p, j=3/2
3
P
1
2
[0]
o
1/2
4s
2
4p
4
(
3
P
1
)5p, j=1/2
4s
2
4p
4
(
3
P
1
)6p, j=1/2
2
[2]
o
3/2
4s
2
4p
4
(
3
P
1
)5p, j=3/2
4s
2
4p
4
(
3
P
1
)6p, j=3/2
2
[2]
o
5/2
4s
2
4p
4
(
3
P
1
)5p, j=5/2
4s
2
4p
4
(
3
P
1
)6p, j=5/2
2
[1]
o
3/2
4s
2
4p
4
(
3
P
1
)5p, j=3/2
4s
2
4p
4
(
3
P
1
)6p, j=3/2
2
[1]
o
1/2
4s
2
4p
4
(
3
P
1
)5p, j=1/2
4s
2
4p
4
(
3
P
1
)6p, j=1/2
3
P
0
2
[1]
o
1/2
4s
2
4p
4
(
3
P
0
)5p, j=1/2
4s
2
4p
4
(
3
P
0
)6p, j=1/2
2
[1]
o
3/2
4s
2
4p
4
(
3
P
0
)5p, j=3/2
4s
2
4p
4
(
3
P
0
)6p, j=3/2
1
D
2
2
[3]
o
5/2
4s
2
4p
4
(
1
D
2
)5p, j=5/2
4s
2
4p
4
(
1
D
2
)6p, j=5/2
2
[3]
o
7/2
4s
2
4p
4
(
1
D
2
)5p, j=7/2
4s
2
4p
4
(
1
D
2
)6p, j=7/2
2
[1]
o
3/2
4s
2
4p
4
(
1
D
2
)5p, j=3/2
2
[2]
o
3/2
4s
2
4p
4
(
1
D
2
)5p, j=3/2
4s
2
4p
4
(
1
D
2
)6p, j=3/2
2
[2]
o
5/2
4s
2
4p
4
(
1
D
2
)5p, j=5/2
4s
2
4p
4
(
1
D
2
)6p, j=5/2
2
[1]
o
1/2
4s
2
4p
4
(
1
D
2
)5p, j=1/2
1
S
0
2
[1]
o
1/2
4s
2
4p
4
(
1
S
0
)5p, j=1/2
2
[1]
o
3/2
4s
2
4p
4
(
1
S
0
)5p, j=3/2
4s
2
4p
4
nf
3
P
4
F
o
9/2
4s
2
4p
4
(
3
P)4f, j=9/2
4
F
o
7/2
4s
2
4p
4
(
3
P)4f, j=7/2
4
F
o
5/2
4s
2
4p
4
(
3
P)4f, j=5/2
4
F
o
3/2
4s
2
4p
4
(
3
P)4f, j=3/2
4
G
o
11/2
4s
2
4p
4
(
3
P)4f, j=11/2
4
D
o
1/2
4s
2
4p
4
(
3
P)4f, j=1/2
4
D
o
3/2
4s
2
4p
4
(
3
P)4f, j=3/2
4
D
o
5/2
4s
2
4p
4
(
3
P)4f, j=5/2
4
G
o
9/2
4s
2
4p
4
(
3
P)4f, j=9/2
4
D
o
7/2
4s
2
4p
4
(
3
P)4f, j=7/2
4
G
o
7/2
4s
2
4p
4
(
3
P)4f, j=7/2
4
G
o
5/2
4s
2
4p
4
(
3
P)4f, j=5/2
2
F
o
5/2
4s
2
4p
4
(
3
P)4f, j=5/2
2
G
o
9/2
4s
2
4p
4
(
3
P)4f, j=9/2
2
F
o
7/2
4s
2
4p
4
(
3
P)4f, j=7/2
2
D
o
3/2
4s
2
4p
4
(
3
P)4f, j=3/2
2
G
o
7/2
4s
2
4p
4
(
3
P)4f, j=7/2
2
D
o
5/2
4s
2
4p
4
(
3
P)4f, j=5/2
1
D
2
D
o
5/2
4s
2
4p
4
(
1
D)4f, j=5/2
2
P
o
3/2
4s
2
4p
4
(
1
D)4f, j=3/2
2
D
o
3/2
4s
2
4p
4
(
1
D)4f, j=3/2
2
H
o
9/2
4s
2
4p
4
(
1
D)4f, j=9/2
2
H
o
11/2
4s
2
4p
4
(
1
D)4f, j=11/2
2
F
o
7/2
4s
2
4p
4
(
1
D)4f, j=7/2
2
F
o
5/2
4s
2
4p
4
(
1
D)4f, j=5/2
2
G
o
7/2
4s
2
4p
4
(
1
D)4f, j=7/2
2
G
o
9/2
4s
2
4p
4
(
1
D)4f, j=9/2
3
P
2
2
[3]
o
5/2
4s
2
4p
4
(
3
P
2
)5f, j=5/2
2
[4]
o
7/2
4s
2
4p
4
(
3
P
2
)5f, j=7/2
2
[4]
o
9/2
4s
2
4p
4
(
3
P
2
)5f, j=9/2
2
[5]
o
11/2
4s
2
4p
4
(
3
P
2
)5f, j=11/2
2
[5]
o
9/2
4s
2
4p
4
(
3
P
2
)5f, j=9/2
2
[3]
o
7/2
4s
2
4p
4
(
3
P
2
)5f, j=7/2
2
[2]
o
5/2
4s
2
4p
4
(
3
P
2
)5f, j=5/2
1
S
2
F
o
7/2
4s
2
4p
4
(
1
S)4f, j=7/2
2
F
o
5/2
4s
2
4p
4
(
1
S)4f, j=5/2
4s4d(
3
D)4p
5
(
2
P#)
4
P
o
1/2
4s4d(
3
D)4p
5
(
2
P#), j=1/2
4
P
o
3/2
4s4d(
3
D)4p
5
(
2
P#), j=3/2
4
P
o
5/2
4s4d(
3
D)4p
5
(
2
P#), j=5/2
4
F
o
9/2
4s4d(
3
D)4p
5
(
2
P#), j=9/2
4
F
o
7/2
4s4d(
3
D)4p
5
(
2
P#), j=7/2
4
F
o
5/2
4s4d(
3
D)4p
5
(
2
P#), j=5/2
4
F
o
3/2
4s4d(
3
D)4p
5
(
2
P#), j=3/2
4
D
o
1/2
4s4d(
3
D)4p
5
(
2
P#), j=1/2
4
D
o
7/2
4s4d(
3
D)4p
5
(
2
P#), j=7/2
4
D
o
3/2
4s4d(
3
D)4p
5
(
2
P#), j=3/2
4
D
o
5/2
4s4d(
3
D)4p
5
(
2
P#), j=5/2
4s4d(
1
D)4p
5
(
2
P#)
2
D
o
5/2
4s4d(
1
D)4p
5
(
2
P#), j=5/2
2
D
o
3/2
4s4d(
1
D)4p
5
(
2
P#), j=3/2
2
F
o
5/2
4s4d(
1
D)4p
5
(
2
P#), j=5/2
4s
2
4p
4
6h
3
P
2
2
[5]
o
9/2
4s
2
4p
4
(
3
P
2
)6h, j=9/2
2
[5]
o
11/2
4s
2
4p
4
(
3
P
2
)6h, j=11/2
2
[6]
o
11/2
4s
2
4p
4
(
3
P
2
)6h, j=11/2
2
[6]
o
13/2
4s
2
4p
4
(
3
P
2
)6h, j=13/2
2
[4]
o
7/2
4s
2
4p
4
(
3
P
2
)6h, j=7/2
2
[4]
o
9/2
4s
2
4p
4
(
3
P
2
)6h, j=9/2
2
[7]
o
15/2
4s
2
4p
4
(
3
P
2
)6h, j=15/2
2
[7]
o
13/2
4s
2
4p
4
(
3
P
2
)6h, j=13/2
2
[3]
o
7/2
4s
2
4p
4
(
3
P
2
)6h, j=7/2
2
[3]
o
5/2
4s
2
4p
4
(
3
P
2
)6h, j=5/2
3
P
1
2
[6]
o
11/2
4s
2
4p
4
(
3
P
1
)6h, j=11/2
2
[6]
o
13/2
4s
2
4p
4
(
3
P
1
)6h, j=13/2
2
[5]
o
9/2
4s
2
4p
4
(
3
P
1
)6h, j=9/2
2
[5]
o
11/2
4s
2
4p
4
(
3
P
1
)6h, j=11/2
3
P
0
2
[5]
o
9/2
4s
2
4p
4
(
3
P
0
)6h, j=9/2
1
D
2
2
[7]
o
15/2
4s
2
4p
4
(
1
D
2
)6h, j=15/2
2
[7]
o
13/2
4s
2
4p
4
(
1
D
2
)6h, j=13/2
2
[4]
o
7/2
4s
2
4p
4
(
1
D
2
)6h, j=7/2
2
[4]
o
9/2
4s
2
4p
4
(
1
D
2
)6h, j=9/2
2
[6]
o
11/2
4s
2
4p
4
(
1
D
2
)6h, j=11/2
2
[6]
o
13/2
4s
2
4p
4
(
1
D
2
)6h, j=13/2
2
[5]
o
11/2
4s
2
4p
4
(
1
D
2
)6h, j=11/2
2
[5]
o
9/2
4s
2
4p
4
(
1
D
2
)6h, j=9/2
4s
2
4p
5
2
P
o
1/2
4s
2
4p
5
, j=1/2
2
P
o
3/2
4s
2
4p
5
, j=3/2
4s
2
4p
4
ng
1
D
2
2
[5]
11/2
4s
2
4p
4
(
1
D
2
)5g, j=11/2
2
[5]
9/2
4s
2
4p
4
(
1
D
2
)5g, j=9/2
2
[4]
7/2
4s
2
4p
4
(
1
D
2
)5g, j=7/2
2
[4]
9/2
4s
2
4p
4
(
1
D
2
)5g, j=9/2
2
[3]
5/2
4s
2
4p
4
(
1
D
2
)5g, j=5/2
2
[3]
7/2
4s
2
4p
4
(
1
D
2
)5g, j=7/2
2
[6]
11/2
4s
2
4p
4
(
1
D
2
)5g, j=11/2
2
[6]
13/2
4s
2
4p
4
(
1
D
2
)5g, j=13/2
3
P
0
2
[4]
7/2
4s
2
4p
4
(
3
P
0
)5g, j=7/2
2
[4]
9/2
4s
2
4p
4
(
3
P
0
)5g, j=9/2
3
P
1
2
[4]
7/2
4s
2
4p
4
(
3
P
1
)5g, j=7/2
2
[4]
9/2
4s
2
4p
4
(
3
P
1
)5g, j=9/2
2
[5]
9/2
4s
2
4p
4
(
3
P
1
)5g, j=9/2
2
[5]
11/2
4s
2
4p
4
(
3
P
1
)5g, j=11/2
2
[3]
7/2
4s
2
4p
4
(
3
P
1
)5g, j=7/2
2
[3]
5/2
4s
2
4p
4
(
3
P
1
)5g, j=5/2
3
P
2
2
[2]
5/2
4s
2
4p
4
(
3
P
2
)5g, j=5/2
4s
2
4p
4
(
3
P
2
)6g, j=5/2
2
[2]
3/2
4s
2
4p
4
(
3
P
2
)5g, j=3/2
4s
2
4p
4
(
3
P
2
)6g, j=3/2
2
[6]
11/2
4s
2
4p
4
(
3
P
2
)5g, j=11/2
4s
2
4p
4
(
3
P
2
)6g, j=11/2
2
[6]
13/2
4s
2
4p
4
(
3
P
2
)5g, j=13/2
4s
2
4p
4
(
3
P
2
)6g, j=13/2
2
[3]
7/2
4s
2
4p
4
(
3
P
2
)5g, j=7/2
4s
2
4p
4
(
3
P
2
)6g, j=7/2
2
[3]
5/2
4s
2
4p
4
(
3
P
2
)5g, j=5/2
2
[5]
9/2
4s
2
4p
4
(
3
P
2
)5g, j=9/2
4s
2
4p
4
(
3
P
2
)6g, j=9/2
2
[4]
7/2
4s
2
4p
4
(
3
P
2
)5g, j=7/2
4s
2
4p
4
(
3
P
2
)6g, j=7/2
2
[4]
9/2
4s
2
4p
4
(
3
P
2
)5g, j=9/2
4s
2
4p
4
(
3
P
2
)6g, j=9/2
2
[5]
11/2
4s
2
4p
4
(
3
P
2
)5g, j=11/2
4s
2
4p
4
(
3
P
2
)6g, j=11/2
4s
2
4p
4
ns
1
S
0
2
[0]
1/2
4s
2
4p
4
(
1
S
0
)5s, j=1/2
4s
2
4p
4
(
1
S
0
)6s, j=1/2
1
D
2
2
[2]
3/2
4s
2
4p
4
(
1
D
2
)5s, j=3/2
4s
2
4p
4
(
1
D
2
)6s, j=3/2
4s
2
4p
4
(
1
D
2
)7s, j=3/2
2
[2]
5/2
4s
2
4p
4
(
1
D
2
)5s, j=5/2
4s
2
4p
4
(
1
D
2
)6s, j=5/2
4s
2
4p
4
(
1
D
2
)7s, j=5/2
3
P
1
2
[1]
1/2
4s
2
4p
4
(
3
P
1
)5s, j=1/2
4s
2
4p
4
(
3
P
1
)6s, j=1/2
4s
2
4p
4
(
3
P
1
)7s, j=1/2
2
[1]
3/2
4s
2
4p
4
(
3
P
1
)5s, j=3/2
4s
2
4p
4
(
3
P
1
)6s, j=3/2
4s
2
4p
4
(
3
P
1
)7s, j=3/2
3
P
0
2
[0]
1/2
4s
2
4p
4
(
3
P
0
)5s, j=1/2
4s
2
4p
4
(
3
P
0
)6s, j=1/2
4s
2
4p
4
(
3
P
0
)7s, j=1/2
3
P
2
2
[2]
3/2
4s
2
4p
4
(
3
P
2
)5s, j=3/2
4s
2
4p
4
(
3
P
2
)6s, j=3/2
4s
2
4p
4
(
3
P
2
)7s, j=3/2
2
[2]
5/2
4s
2
4p
4
(
3
P
2
)5s, j=5/2
4s
2
4p
4
(
3
P
2
)6s, j=5/2
4s
2
4p
4
(
3
P
2
)7s, j=5/2
4s
2
4p
4
nd
1
S
0
2
[2]
3/2
4s
2
4p
4
(
1
S
0
)5d, j=3/2
2
[2]
5/2
4s
2
4p
4
(
1
S
0
)5d, j=5/2
1
D
2
2
[2]
3/2
4s
2
4p
4
(
1
D
2
)5d, j=3/2
4s
2
4p
4
(
1
D
2
)6d, j=3/2
2
[1]
1/2
4s
2
4p
4
(
1
D
2
)5d, j=1/2
4s
2
4p
4
(
1
D
2
)6d, j=1/2
2
[3]
5/2
4s
2
4p
4
(
1
D
2
)5d, j=5/2
4s
2
4p
4
(
1
D
2
)6d, j=5/2
2
[3]
7/2
4s
2
4p
4
(
1
D
2
)5d, j=7/2
4s
2
4p
4
(
1
D
2
)6d, j=7/2
2
[1]
3/2
4s
2
4p
4
(
1
D
2
)5d, j=3/2
4s
2
4p
4
(
1
D
2
)6d, j=3/2
2
[0]
1/2
4s
2
4p
4
(
1
D
2
)5d, j=1/2
4s
2
4p
4
(
1
D
2
)6d, j=1/2
2
[2]
5/2
4s
2
4p
4
(
1
D
2
)5d, j=5/2
4s
2
4p
4
(
1
D
2
)6d, j=5/2
2
[4]
9/2
4s
2
4p
4
(
1
D
2
)5d, j=9/2
4s
2
4p
4
(
1
D
2
)6d, j=9/2
2
[4]
7/2
4s
2
4p
4
(
1
D
2
)5d, j=7/2
4s
2
4p
4
(
1
D
2
)6d, j=7/2
3
P
0
2
[2]
5/2
4s
2
4p
4
(
3
P
0
)5d, j=5/2
4s
2
4p
4
(
3
P
0
)6d, j=5/2
2
[2]
3/2
4s
2
4p
4
(
3
P
0
)5d, j=3/2
4s
2
4p
4
(
3
P
0
)6d, j=3/2
3
P
1
2
[2]
3/2
4s
2
4p
4
(
3
P
1
)5d, j=3/2
4s
2
4p
4
(
3
P
1
)6d, j=3/2
2
[3]
5/2
4s
2
4p
4
(
3
P
1
)5d, j=5/2
4s
2
4p
4
(
3
P
1
)6d, j=5/2
2
[2]
5/2
4s
2
4p
4
(
3
P
1
)5d, j=5/2
4s
2
4p
4
(
3
P
1
)6d, j=5/2
2
[1]
3/2
4s
2
4p
4
(
3
P
1
)5d, j=3/2
4s
2
4p
4
(
3
P
1
)6d, j=3/2
2
[3]
7/2
4s
2
4p
4
(
3
P
1
)5d, j=7/2
4s
2
4p
4
(
3
P
1
)6d, j=7/2
2
[1]
1/2
4s
2
4p
4
(
3
P
1
)5d, j=1/2
4s
2
4p
4
(
3
P
1
)6d, j=1/2
3
P
2
2
[3]
5/2
4s
2
4p
4
(
3
P
2
)5d, j=5/2
4s
2
4p
4
(
3
P
2
)6d, j=5/2
2
[1]
3/2
4s
2
4p
4
(
3
P
2
)5d, j=3/2
4s
2
4p
4
(
3
P
2
)6d, j=3/2
2
[0]
1/2
4s
2
4p
4
(
3
P
2
)5d, j=1/2
4s
2
4p
4
(
3
P
2
)6d, j=1/2
2
[4]
7/2
4s
2
4p
4
(
3
P
2
)5d, j=7/2
4s
2
4p
4
(
3
P
2
)6d, j=7/2
2
[4]
9/2
4s
2
4p
4
(
3
P
2
)5d, j=9/2
4s
2
4p
4
(
3
P
2
)6d, j=9/2
2
[1]
1/2
4s
2
4p
4
(
3
P
2
)5d, j=1/2
4s
2
4p
4
(
3
P
2
)6d, j=1/2
2
[2]
3/2
4s
2
4p
4
(
3
P
2
)5d, j=3/2
4s
2
4p
4
(
3
P
2
)6d, j=3/2
2
[2]
5/2
4s
2
4p
4
(
3
P
2
)5d, j=5/2
4s
2
4p
4
(
3
P
2
)6d, j=5/2
2
[3]
7/2
4s
2
4p
4
(
3
P
2
)5d, j=7/2
4s
2
4p
4
(
3
P
2
)6d, j=7/2
1
S
2
D
5/2
4s
2
4p
4
(
1
S)4d, j=5/2
2
D
3/2
4s
2
4p
4
(
1
S)4d, j=3/2
1
D
2
S
1/2
4s
2
4p
4
(
1
D)4d, j=1/2
2
F
7/2
4s
2
4p
4
(
1
D)4d, j=7/2
2
F
5/2
4s
2
4p
4
(
1
D)4d, j=5/2
2
G
7/2
4s
2
4p
4
(
1
D)4d, j=7/2
2
G
9/2
4s
2
4p
4
(
1
D)4d, j=9/2
2
D
5/2
4s
2
4p
4
(
1
D)4d, j=5/2
2
P
3/2
4s
2
4p
4
(
1
D)4d, j=3/2
2
D
3/2
4s
2
4p
4
(
1
D)4d, j=3/2
2
P
1/2
4s
2
4p
4
(
1
D)4d, j=1/2
3
P
2
D
3/2
4s
2
4p
4
(
3
P)4d, j=3/2
2
D
5/2
4s
2
4p
4
(
3
P)4d, j=5/2
2
P
1/2
4s
2
4p
4
(
3
P)4d, j=1/2
2
P
3/2
4s
2
4p
4
(
3
P)4d, j=3/2
2
F
5/2
4s
2
4p
4
(
3
P)4d, j=5/2
2
F
7/2
4s
2
4p
4
(
3
P)4d, j=7/2
4
P
5/2
4s
2
4p
4
(
3
P)4d, j=5/2
4
P
3/2
4s
2
4p
4
(
3
P)4d, j=3/2
4
P
1/2
4s
2
4p
4
(
3
P)4d, j=1/2
4
F
3/2
4s
2
4p
4
(
3
P)4d, j=3/2
4
F
5/2
4s
2
4p
4
(
3
P)4d, j=5/2
4
F
7/2
4s
2
4p
4
(
3
P)4d, j=7/2
4
F
9/2
4s
2
4p
4
(
3
P)4d, j=9/2
4
D
1/2
4s
2
4p
4
(
3
P)4d, j=1/2
4
D
3/2
4s
2
4p
4
(
3
P)4d, j=3/2
4
D
5/2
4s
2
4p
4
(
3
P)4d, j=5/2
4
D
7/2
4s
2
4p
4
(
3
P)4d, j=7/2
4s4p
6
2
S
1/2
4s4p
6
, j=1/2
291.801
664.4337
498.684
293.069
293.216
295.89
295.35
364.049
290.533
413.0661
283.167
283.073
281.818
284.312
285.036
285.298
285.166
296.603
296.694
305.006
471.7577
478.6111
465.2316
430.6452
437.3416
442.7311
301.591
484.2037
488.4155
298.118
297.323
299.272
300.124
488.2605
300.273
378.525
388.581
258.184
258.081
406.942
258.581
259.238
259.611
259.411
419.7839
257.546
251.489
251.21
251.066
251.69
251.76
412.9319
250.3
259.633
259.947
534.1853
396.22
399.192
531.848
267.863
392.435
394.896
264.396
399.924
263.812
263.379
263.912
263.927
264.221
422.073
4473.951
4478.186
4484.174
4496.455
4513.402
4525.324
4524.926
4522.002
4526.381
4528.294
4536.754
4534.101
4518.484
4518.278
4509.079
4507.06
4505.396
4514.751
4516.475
4517.866
4516.919
4502.478
4245.343
4110.2
4106.506
4093.68
4114.863
4115.325
4188.323
4136.988
4118.017
4092.019
4069.279
4036.378
4032.979
4023.643
4036.467
4038.385
4064.618
4039.482
4205.249
4223.775
4412.618
4387.482
4380.282
4438.781
4449.841
4455.25
4451.342
4366.564
4362.787
4268.879
4538.099
4232.767
4293.717
4298.571
4346.314
4299.542
4464.303
4496.455
5595.174
5494.631
5626.927
5647.19
5776.759
5772.657
5478.622
5475.276
5033.435
5004.209
5060.487
5068.337
5414.988
5344.696
5881.363
5978.943
6324.005
6222.211
6356.232
6394.942
6470.111
4539.662
6133.909
6093.986
6031.803
6025.124
6036.478
6048.432
6056.071
4958.836
6245.726
4592.007
4587.079
4592.411
4600.325
4602.097
4601.758
4582.146
4581.322
4543.495
4541.698
4952.12
4554.414
4574.382
4572.795
4603.516
4557.476
4828.819
4717.208
4737.098
4797.244
4790.566
4616.449
4691.571
4742.994
4685.078
4617.477
4616.449
4654.771
4656.463
1798.167
1798.318
1799.723
1788.363
1799.877
1796.221
1790.894
1799.978
1792.025
1794.892
1797.182
1797.976
1804.545
1831.25
1828.09
1786.838
1840.052
1840.256
1824.628
1819.764
1801.686
1801.045
1803.641
1805.326
1818.918
1800.723
1744.535
1730.343
1729.533
1732.121
1738.068
1738.663
1726.557
1724.59
1843.553
1717.747
1722.486
1724.234
1724.59
1743.408
1747.276
1777.252
1770.722
1778.236
1783.618
1784.223
1766.529
1765.244